An Anomaly Detection Method of Industrial Data Based on Stacking Integration
نویسندگان
چکیده
منابع مشابه
Anomaly Detection for Industrial Big Data
As the Industrial Internet of Things (IIoTa) grows, systems are increasingly being monitored by arrays of sensors returning time-series data at ever-increasing ‘volume, velocity and variety’b (i.e. Industrial Big Datac). An obvious use for these data is real-time systems condition monitoring and prognostic time to failure analysis (remaining useful life, RUL). (e.g. See white papers by Senseye....
متن کاملAn Entropy-Based Network Anomaly Detection Method
Data mining is an interdisciplinary subfield of computer science involving methods at the intersection of artificial intelligence, machine learning and statistics. One of the data mining tasks is anomaly detection which is the analysis of large quantities of data to identify items, events or observations which do not conform to an expected pattern. Anomaly detection is applicable in a variety o...
متن کاملBehavior-based anomaly detection on big data
Recently, cyber-targeted attacks such as APT (Advanced Persistent Threat) are rapidly growing as a social and national threat. It is an intelligent cyber-attack that infiltrates the target organization and enterprise clandestinely using various methods and causes considerable damage by making a final attack after long-term and through preparations. These attacks are threatening cyber worlds suc...
متن کامل3D Gabor Based Hyperspectral Anomaly Detection
Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...
متن کاملAn angle-based subspace anomaly detection approach to high-dimensional data: With an application to industrial fault detection
The accuracy of traditional anomaly detection techniques implemented on full-dimensional spaces degrades significantly as dimensionality increases, thereby hampering many real-world applications. This work proposes an approach to selecting meaningful feature subspace and conducting anomaly detection in the corresponding subspace projection. The aim is to maintain the detection accuracy in high-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal on Artificial Intelligence
سال: 2021
ISSN: 2579-003X
DOI: 10.32604/jai.2021.016706